
Mike Hamburg, Rambus Cryptography Research

The STROBE
protocol framework

Secure, simple, and small

What is STROBE?

❖ Protocol framework with embedded focus

❖ Simple protocols and handshakes

❖ Encrypt, MAC, hash, sign…

❖ Simple, easy to analyze

❖ Non-terrible performance

❖ Can be an instance of NIST [cSHAKE]

Motivation: bespoke protocols
❖ Best practice: use TLS or IPSEC

❖ Real-world protocols have diverse requirements

❖ Public key encryption/auth algorithms

❖ Message flow

❖ Code size and memory requirements

❖ Result: lots of custom protocols!

❖ Design and analysis are a pain

❖ Often insecure

Motivation: academic protocols
❖ Hash, sign, encrypt and MAC on tuples, key confirm

❖ [FHMQV]-C:

Alice Bob

X = gx, (A = ga, B=gb)

Y = gy, MB

d = H(X,Y,A,B)
e = H(Y,X,A,B)
𝜎 = g(x+da)(y+eb)

K1 = KDF1(𝜎,A,B,X,Y)
MA = MAC(K1; A,X)
MB = MAC(K1; B,Y)

K2 = KDF2(𝜎,A,B,X,Y)

MA

Motivation: [TLS 1.2]

Finished is also encrypted, but I got bored before drawing the cipher calls.

Premaster secret

Client +
server

random

Handshake
hash ctx

Keys and IVs
Client finished

Server finishedMaster secret

The modern solution

Hash all the things!

Eg: [TLS 1.3], [Noise], [BLINKER]

STROBE overview

STROBEApplication Transport

Partially trusted
Sets keys

Payload plaintext
Metadata

Protocol framing
Asymmetric crypto

Trusted
Hashes all messages

Stores cipher/hash state
Optional encryption

Computes MAC, hash

Untrusted
Network or flash

Sees ciphertext, MAC
Reliable when no attack

In-order

All messages pass through STROBE
(at the least, to update the hash)

STROBE two-party protocols

STROBEApp Transport STROBE App

Alice Bob

Alice and Bob’s STROBE instances advance in lockstep

If a message is changed on the wire, the next MAC will fail

Init

STROBE example: FHMQV-C

Hash gx

gy

Init

𝜎

App

VerMac MACA

Everything is based on running hash
d = H(A,B,gx,gy) e = H(A,B,gx,gy,d)

MACB = H(A,B,gx,gy,d,e,𝜎)

verified

Alice Bob

App

Hash
Hash

PRF

MacVer MACB
send
MAC

send
MAC

verified
Rekey Rekey 𝜎

PRF
e
d

PRF
PRF

e
d

Hash
B

A

Hash
Hash
Hash

Hash A
B

[𝜎 = g(x+da)(y+eb)]

(roughly)

STROBE operations
RekeyA

A
Key
AD

CAPRF

CA T
CA T

Send enc
Recv enc

HA T
A T

Send clear
Recv clear H

H

C T
C T

Send MAC
Verify MAC

0
=0?

Ratchet Rekey0

All described by 4 features:

A
0

Data goes to/
from app

C
H

Rekey
Data goes to/
from cipher

(else just hash)

Data goes to/
from transport

Data flow
direction

T

O
I

STROBE implementation
❖ Duplex sponge construction

[RadioGatún, KECCAK, Duplex]

❖ State is divided into two parts:

❖ Rate gets xor’d with input block

❖ Capacity is kept separate

❖ (r, c) = F(r⊕m, c)

F

init
r c

F

F

Enc

Dec

MAC

Hash

Init

“Hash all the things”

❖ Goal: output of Strobe is a random oracle

❖ Input is all previous operations

❖ H(“abc”) != H(“a”,“bc”)

❖ Includes operation type and data

❖ Includes intended use of output

STROBE padding

❖ Theorem from [Duplex]: sponge output is a random
oracle on previous inputs (if F is a random fn/perm)

❖ ⇒ Requirement: each time F is called, can parse:

❖ Entire previous transcript

❖ Intended use of output

STROBE padding

beginmmop

Op 1
(doesn’t use C)

8004 00

KECCAK /
cSHAKE
padding

op

Begin op 2
(uses C)

begin

STROBE
padding

F

F

Operations with metadata
❖ Output depends on its intended use

❖ “Will be used to encrypt a message” isn’t good enough

❖ What kind of message? How long?

❖ Disambiguate with metadata operations

❖ Metadata AD/CLR/ENC before each operation

❖ Can be (tag, length) of protocol framing

❖ Optional but recommended. Cheap.

Implementation

❖ Prototype C code at https://strobe.sourceforge.io/

❖ Optimized for size on embedded devices

❖ Includes simple callback-based IO engine

❖ Curve25519 code may be of independent interest

https://strobe.sourceforge.io/

Implementation results
❖ KECCAK-f[800], Cortex-M3/M4 C

❖ < 2 KB code, <350 B stack

❖ With Curve25519 ECDH/sign/verify; PRNG support

❖ < 3.5KB code, 700B stack, 120B PRNG pool

❖ Significantly smaller with asm intrinsics (unreleased)

Future work
❖ Better documentation and example protocols

❖ Improve engine code

❖ Non-sponge implementation

❖ Formal analysis

❖ Most work is done by [Duplex]

❖ Rollback resistance, full protocol analysis

❖ Post-quantum analysis

Works cited
❖ [BLINKER]: Markku-Juhani Saarinen. “Beyond Modes: Building a Secure

Record Protocol from a Cryptographic Sponge Permutation.” CT-RSA 2014,
https://eprint.iacr.org/2013/772

❖ [cSHAKE]: John Kelsey, Shu-jen Chang Ray Perlner. “SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash.” NIST SP 800-185,
December 2016, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-185.pdf

❖ [Duplex]: Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche.
"Duplexing the sponge: single-pass authenticated encryption and other
applications.” SAC 2011, http://sponge.noekeon.org/SpongeDuplex.pdf

❖ [FHMQV]: Augustin Sarr, Philippe Elbaz-Vincent, Jean-Claude Bajard. “A
secure and efficient authenticated diffie–hellman protocol.” European PKI
Workshop 2009, https://eprint.iacr.org/2009/408

https://eprint.iacr.org/2013/772
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://sponge.noekeon.org/SpongeDuplex.pdf
https://eprint.iacr.org/2009/408

Works cited
❖ [KECCAK]: Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche.

“The KECCAK sponge function family.” NIST SHA-3 submission, http://
keccak.noekeon.org/

❖ [Noise]: Trevor Perrin. “Noise Protocol Framework.” http://
www.noiseprotocol.org/

❖ [RadioGatún]: Guido Bertoni and Joan Daemen, Michaël Peeters and Gilles
Van Assche. “RadioGatún, a belt-and-mill hash function.” Cryptographic Hash
Workshop 2006, http://eprint.iacr.org/2006/369

❖ [TLS 1.2]: Tim Dierks and Eric Rescorla. “The Transport Layer Security (TLS)
Protocol, Version 1.2.” RFC 5246 (2008), https://www.ietf.org/rfc/rfc5246.txt

❖ [TLS 1.3]: Eric Rescorla. "The Transport Layer Security (TLS) Protocol Version
1.3.” draft, https://tlswg.github.io/tls13-spec/

http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://www.noiseprotocol.org/
http://www.noiseprotocol.org/
http://eprint.iacr.org/2006/369
https://www.ietf.org/rfc/rfc5246.txt
https://tlswg.github.io/tls13-spec/

FIN

Questions?

